首页> 外文OA文献 >Global motion and airgap computations for semi-submersible floating production unit in waves
【2h】

Global motion and airgap computations for semi-submersible floating production unit in waves

机译:半潜式浮式生产装置波浪中的全局运动和气隙计算

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We study the global hydrodynamic performance of a semi-submersible floating platform unit in order to optimize the hull form in the future. The hydrodynamic problem is solved by employing potential flow theory and Morison equation for modelling of the viscous effects. The added mass and damping coefficients, as well as the first-order motion responses, second-order mean drift forces, diffracted and radiated wave field, and airgap are computed to examine the hydrodynamic behavior of the floating production unit. The computational results show that the motion responses in short-crested waves are mostly smaller than those in long-crested waves. The maximum wave elevation occurs at WP45 in 45°45° wave heading in long-crested waves. In addition, the minimum airgap occurs at AG45 in 45°45° wave heading in linear waves, while the worst airgap point in nonlinear waves is AG0 in 0°0° wave heading. Extensive parametric studies have been performed to examine the dependence of the motion responses and the other key design criteria on the principal dimensions including hull draft, column width, column spacing, column corner radius, pontoon height, pontoon width, and the size of cakepiece. By comprehensive and systematic hydrodynamic computations and analyses, it is revealed that the combined vertical motion at the worst airgap location is almost in phase with the wave elevation in extreme wave condition with a peak wave period around 14–15 s. Moreover, it is found that the most efficient way to reduce the motion is to increase the hull draft, though the airgap may also decrease. Besides, reducing the pontoon height can achieve better motion performance and larger airgap simultaneously. This paper aims to provide a benchmark for future studies on automatic hull form optimization.
机译:我们研究半潜水式浮动平台装置的整体水动力性能,以便将来优化船体形式。通过采用势流理论和莫里森方程对粘性效应进行建模来解决流体动力学问题。计算增加的​​质量和阻尼系数,以及一阶运动响应,二阶平均漂移力,衍射和辐射波场以及气隙,以检查浮动生产单元的水动力行为。计算结果表明,短波中的运动响应大多小于长波中的运动响应。最大波高出现在WP45的45°45°长波中。另外,最小气隙出现在线性波的45°45°航向的AG45处,而最差气隙点出现在0°0°航向的AG0处。已经进行了广泛的参数研究,以检查运动响应和其他关键设计标准对主要尺寸的依赖性,这些主要尺寸包括船体吃水,立柱宽度,立柱间距,立柱拐角半径,浮桥高度,浮桥宽度和蛋糕的大小。通过全面和系统的水动力计算和分析,发现在最差气隙位置的组合垂直运动与极端波条件下的波高几乎处于同相状态,峰值波周期约为14-15 s。此外,发现减小运动的最有效方法是增加船体吃水深度,尽管气隙也可能减小。此外,减小浮桥高度可以同时获得更好的运动性能和更大的气隙。本文旨在为将来的自动船体形式优化研究提供基准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号